Inhomogeneous cloud coverage through the Coulomb explosion of dust in substellar atmospheres

نویسندگان

  • C. R. Stark
  • Ch. Helling
  • D. A. Diver
چکیده

Context. Recent observations of brown dwarf spectroscopic variability in the infrared infer the presence of patchy cloud cover. Aims. This paper proposes a mechanism for producing inhomogeneous cloud coverage due to the depletion of cloud particles through the Coulomb explosion of dust in atmospheric plasma regions. Charged dust grains Coulomb-explode when the electrostatic stress of the grain exceeds its mechanical tensile stress, which results in grains below a critical radius a < aCoul crit being broken up. Methods. This work outlines the criteria required for the Coulomb explosion of dust clouds in substellar atmospheres, the effect on the dust particle size distribution function, and the resulting radiative properties of the atmospheric regions. Results. Our results show that for an atmospheric plasma region with an electron temperature of Te = 10 eV (≈ 105 K), the critical grain radius varies from 10−7 to 10−4 cm, depending on the grains’ tensile strength. Higher critical radii up to 10−3 cm are attainable for higher electron temperatures. We find that the process produces a bimodal particle size distribution composed of stable nanoscale seed particles and dust particles with a ≥ aCoul crit , with the intervening particle sizes defining a region devoid of dust. As a result, the dust population is depleted, and the clouds become optically thin in the wavelength range 0.1 − 10 μm, with a characteristic peak that shifts to higher wavelengths as more sub-micrometer particles are destroyed. Conclusions. In an atmosphere populated with a distribution of plasma volumes, this will yield regions of contrasting radiative properties, thereby giving a source of inhomogeneous cloud coverage. The results presented here may also be relevant for dust in supernova remnants and protoplanetary disks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dust in brown dwarfs and extra-solar planets II. Cloud formation for cosmologically evolving abundances

Aims. Substellar objects have extremely long life-spans. The cosmological consequence for older objects are low abundances of heavy elements, which results in a wide distribution of objects over metallicity, hence over age. Within their cool atmosphere, dust clouds become a dominant feature, affecting the opacity and the remaining gas phase abundance of heavy elements. We investigate the influe...

متن کامل

Rain and Clouds in Brown Dwarf Atmospheres: a Coupled Problem from Small to Large

The large scale structure of a brown dwarf atmosphere is determined by an interplay of convection, radiation, dust formation, and gravitational settling, which possibly provides an explanation for the observed variability. The result is an element depletion of the dust forming regions and an element enrichment of the dust evaporating sites. The formation of dust cloud structures in substellar a...

متن کامل

Consistent simulations of substellar atmospheres and non-equilibrium dust-cloud formation

We aim to understand cloud formation in substellar objects. We combined the non-equilibrium, stationary cloud model of Helling, Woitke & Thi (2008; seed formation, growth, evaporation, gravitational settling, element conservation) with the general-purpose model atmosphere code Phoenix (radiative transfer, hydrostatic equilibrium, mixing length theory, chemical equilibrium) in order to consisten...

متن کامل

The need for small-scale turbulence in atmospheres of substellar objects

Brown dwarfs and giant gas planets are substellar objects whose spectral appearance is determined by the chemical composition of the gas and the solids/liquids in the atmosphere. Atmospheres of substellar objects possess two major scale regimes: large-scale convective motions + gravitational settling and small-scale turbulence + dust formation. Turbulence initiates dust formation spot-like on s...

متن کامل

A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres

The atmospheres of substellar objects contain clouds of oxides, iron, silicates, and other refractory condensates. Water clouds are expected in the coolest objects. The opacity of these ‘dust’ clouds strongly affects both the atmospheric temperature-pressure profile and the emergent flux. Thus any attempt to model the spectra of these atmospheres must incorporate a cloud model. However the dive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015